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OPTIMALITY OF STATIONARY HALTING POLICIES
AND FINITE TERMINATION OF SUCCESSIVE APPROXIMATIONS

1, Introduction

Consider a discrete-time~-parameter S-state finite-action branching
Markov decision chain., Attention centers here on halting (resp.,
stopping) policies, i.e., those for which the expected population size
at time N 1is zero for some N (resp., converges to zero as N
approaches infinity). The value of a policy is the expected infinite-
horizon income that it earns. The supremum of the values of the halting
(resp., stopping) policies is the optimal halting (resp., stopping)
value of the decision chain. In general these values are not the same.
An optimal halting (resp., stopping) policy is one having maximum
value in that class of policies.

Eaves and Veinott [1] have shown that if there is a stopping
policy and all rewards are finite, then there is a stationary optimal
stopping policy if and only if the optimal stopping value is finite.
Moreover, when initiated with the value of a stopping policy, they have
shown that the iterates of successive approximations converge to the
optimal stopping value; also that value is a fixed point of the optimal
return operator.

The purpose of this paper is to investigate the following addi-
tional problems under the hypothesis that the rewards are all real

(resp., real or minus infinity) valued. When does there exist a halting

stationary optimal stopping (resp., halting) policy? When do the

P

iterates of successive approximations converge in finitely many steps

assuming initiation with the value of a stationary halting policy?
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The motivation for studying these problems comes from a companion

paper with Veinott [2]. There we show that the problem of finding

a minimum-concave-cost flow in a single-source network can be reduced

to finding a stationary optimal halting policy in an associated branching
Markov decision chain.

In order for there to be a halting optimal stopping (resp., halting)
policy, there must be a halting policy. Section 3 is concerned with
finding such a policy. To describe the results, let the halting time
of a policy from a state s be the first time at which the expected
population size is zero starting from s, if there is such a time;
otherwise, let the halting time from s be infinity. Also let the
halting time of a policy be the largest of its halting times from
each state. The main result of Section 3 is that there is a stationary
policy that simultaneously minimizes the halting time from each state,
and each of the finite halting times of that policy is S or less.

The proof of this result is a constructive combinatorial algorithm

for finding the desired policy and its halting times from each state.
One consequence of the above result is that there is a halting policy
if and only if there is a stationary halting policy. Moreover, that

is so if and only if the (stationary) policy found by the above algor=-
ithm is halting, or what is the same thing, its halting time is S

or less. These results complement those of Rothblum [4, p. 74] con-
cerning the case where instead every policy is halting (he calls halting
policies nilpotent).

The main results are given in Section 4. There we characterize

the existence of halting stationary optimal stopping (resp., halting)




policies by the condition that successive approximations terminates

in finitely many steps. More precisely, suppose the rewards are real
(resp., real or minus infinity) valued and successive approximations

is initiated with the value of a stationary halting policy. Then

the N-th iterate of successive approximations is a fixed point of the
optimal return operator for some N if and only if that is so for

some N not exceeding the largest of the halting times of the stationary
halting policies; moreover, this occurs if and only if there exists

a halting stationary optimal stopping (resp., halting) policy. Further-
more, when this is so, successive approximations terminates at the

N-th iteration with such a policy, and its value is the indicated

fixed point. Analogous results are also established where successive
approximations is replaced by a Gauss-Seidel version. The running

time of each of the above methods is proportional to the product of

the numbers of states and nonzero data elements, i.e., rewards and

transition probabilities.
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2. Preliminaries.

Following Eaves and Veinott [ 1 ], Veinott [ 6 ], and Rothblum-Veinott
[ 5] a branching Markov decision chain will now be described. Consider
a population consisting of a finite set of individuals each of which
is observed at a sequence of points in time labeled 1, 2, ... . An
individual observed at a given time point is found to be in a finite
set gf of states labeled 1, 2, ... , S. If there is no individual
in any state, the population is said to have stopped. Each time an
individual is observed in state s, an action a 1is chosen from a
nonempty finite set AS of possible actions in state s and a reward
-0 < r(s,a) <® is received. The expected number of individuals in
state t at time N+1 generated by each individual in state s at
time N, given that action a was chosen at time N and given the
states observed and actions taken at times 1, 2, ... , N=1 1is assumed
to be a real nonnegative function p(tls,a) depending only on t, s,
and a.

S .
Let A = Xs= A_ be the set of all decisions and let a policy be

L8

a sequence T = (61, 82, «es) of decisions. Using a policy T means
that if an individual is observed in state s at time N, then 6;
is the action chosen at that time. TLet Sm denote the sequence

(8, &, ...) and call it a stationary policy.

For any & ¢ 4, let Ts be the S-vector whose s-th component is

r(s,ss) and let P. be the nonnegative S X S matrix whose st-th

o}
element is p(tls,&s). The elements of P5 will be referred to as
N
transition rates. Let Pz P51P52 .. PBN where T = (Sl, 8,5 W

A state t 1is said to be accessiblc from state s in N steps using

4
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policy mw if Pﬁﬂt > 0. A state is always accessible from itself in

zero steps. A state is called immediately accessible from another when

that is so in one step.

Define the S-vector = called the value of 1, by

k
Ve = lim sup v,}:r = lim sup ), PNWra =
e k - ® N=0 N+1

Call the s=th component of Yy the value of T at initial state s.
o0

A policy T is called transient if 7}, Pﬁ converges, and in this
N=0

case

since the sum converges absolutely.
N

Call a policy m halting if PW = 0 for some N2> 0, and stopping

ir Pﬁ -+ 0 as N - », Of course halting policies are stopping. A

halting (resp., stopping) policy T will be called optimal halting

(resp., stopping) if v",z ¥y for all halting (resp., stopping) policies

0. In that event, w” is called the optimal halting (resp., stopping)

value of the system. The term "branching” refers to the fact that we
require the transition rates to be nonnegative only. If in addition
we assume that the sum of the transition rates in each row of P5 is
one or less for each decision &, then we obtain an ordinary Markov
decision chain. If such is the case, then the conditional probability
that a subsystem enters the stopped state at time N+1 given that it

ic observed in state s at time N and action a 1is chosen then

S
is 1=7 p(t]s,a), Associated with each decision 8 is a (directed)
t=1
5
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graph GS whose nodes are the states 1, 2, ... , S and whose arcs

are the ordered pairs (s,t) such that P > 0. A graph G is

ost
called circuitless if the nodes can be labeled 1, 2, «ese , N so that
if (s,t) is anarc in G, then s < +t. A stationary policy &

is halting if and only if the graph (}5 is circuitless.

Fe Characterization of Halting Policies.

Rothblum [4, p. T4] refers to halting policies as "nilpotent"
policies. Define the halting time h'rr of a policy T to be the
smallest integer N > O such that PTI\:, =0 if T is halting, and
set h‘rr = © otherwise. Note that if policy w7 is used, then the
individuals are almost surely in the stopped state at time h,"_, i.e.,
the population has stopped.

A decision & is called halting if that is so for 8 . Denote

by I +the set of halting decisions and let h = max h, be called

g
the halting time of the system where hy=h and h=w if T = p.
)
Define h1rt’ the halting time of the policy 7 from state t,

as the smallest integer N such that the t=th row of P# vanishes
if such an integer exists, and h‘n‘t = © otherwise. Thus h'n‘t is
the smallest integer N > O such that the population stops in N steps
or less from t. NNote that h'n't is a "combinatorial" property of T
in the sense that it depends on the location but not the magnitude of
the positive elements of the PS'
The halting set ’“v is the set of states t such that h‘rrt <®
for some . Hence t € PF if there exists a policy with finite halting

time from state t. The proof of the following result not only constructs

M+ P TN g ; R e L -
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the set "N but also exhibits a decision & which satisfies hBt <@

for each t in 'H’ where h,, = h « Moreover, h is computed for

ot 0

&t ot

each t € .

Theorem 3.1. (Existence of Stationary Policies With Minimum Halting
Times)

There is a stationary policy which simultaneously minimizes the
halting times from each state. Moreover, the halting time of that policy

is S or less from each state in .

Proof. Let Hk be the set of states from which there is a policy with
halting time k or less. Then H =f, Also H =H UL for
k > 1 where Ik is the set of states s not in Hk 1 such that
for some action Ss, say, in AS, p(tls,ﬁs) =0 for each ¢ )é H‘k-l’
Since the Ik are disjoint, there is an integer N < § such that
Tgey = P, and so Hy=Hy ) = o =¥ . For each s ¢ ¥ define

8° in A, arbitrarily. For each s e¥, hy =k where s ¢ L

ds
and from the construction this is the minimum halting time from s. Q.E.D.

Note that the number of operations required to obtain a decision
® with minimum halting time is O(S3 z) where z is the average number
of actions in a state. Moreover, if o = A , then the decision &
exhibited in the proof is halting., The proof implies that if R £.3,
then for each i € J \N‘ the i-th row of PTI: contains a nonzero
element for each policy 7 and each integer N > 1.

A matrix P 1is called nilpotent if PN = 0 for some N. The

spectrum of a matrix is defined as the set of its eigenvalues. Let

4._.4




L(G) be the number of nodes in a maximal chain (i.e., a directed path
with no repetition of nodes) in the graph G. The following lemma
states several known (e.g., Rothblum [4, p. 4], Kato [3, pp. 22, 38])

characterizations of halting decisions.

Lemma 3.2. (Characterization of Halting Decisions)

If & is a decision, the following are equivalent:

(a) 8 1is halting.

(v) Py 1is nilpotent.

(c) The spectrum of Py is {0}.
(a) Gy 1is circuitless.

(e)  hy=L(Gg).

(£) - b, S

(g) hy < ,
The next result is immediate from Theorem 3.1 and Lemma 3.2.

Theorem 3.3. (Existence of Halting Policies)

The following are equivalent:

(a) There exists a stationary halting policy.
(b) Py 1is nilpotent for some decision B.
(e) The spectrum of Py is {0} for some decision 8.

(d) G8 is circuitless for some decision 8.

(e) h

5 = L(GS) for some decision 8.
() hg <8 for some decision 8.

(&) n<s




e,

s

s, o ——————————

(n) There exists a halting policy.

(1) =4 .

Remark. The computation of h 1is NP-complete since a sclution can be

verified in polynomial time and the longest path problem (which is
NP-complete) can be transformed to the present problem in polynomisl
time. To see this, let the states be nodes and let the actions deter-
mine whether to stop or choose an arc leading to an adjacent node.

The graph of a halting decision & 1is circuitless and h8 is the
length of it's longest path. Note that h8 equals the number of
nodes if and only if there is a Hamiltonian path (i.e., a path con-

taining all the nodes) in the graph.
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L, Stopping Optimality and Finite Termination of Successive Approxi-

mations.

In this section the existence of a halting stationary optimal
halting (resp., stopping) policy will be characterized by the condition
that successive approximations terminates in finitely many steps.

First, define the optimal return operator R by “Rv = max

seAte"?
where RBV =Ty + P6v. The method of successive approximations is

the repeated application of the optimal return operator, ‘“lev being

the k-th approximation using v as the initial approximation. When
Ty >> o for all 8, Eaves and Veinott [1] have shown that for every
stopping value vo, -ﬁ,kvo ﬁ v* where v* is the optimal stopping value and
there is a stationary optimal stopping policy if and only if v*

is finite. In our study of halting policies, the initial approxi-

mation v° will be the value of any halting decision 7 where we

require only that - < r7 << », Then v,, is the unique v <K «

satisfying the recursive system v = Ryv. Recall also that a halting

7 can be constructed as in the proof of Theorem 3.1, if one exists.

Lemma 4.1.
If 7 is a halting decision, then 'ﬁkv7 is nondecreasing in

k > 0 and is the value of a halting policy for each k > 0. Also,

k k
- = > .
-ﬂ v > R,’v Viy for each k > h,, and Vv

Proof.
k+1 k
= >
Since 7 1is halting 'Rv7 > Ryv, = v, 80 v v, >R Yy

for k> 0. Also ‘H,kv7 is the value of a halting policy that uses

10




7Y in each period following period k. The final assertion is immediate

h

on noting that P 7 - 0.

7
, Under the assumption that e >> -o for all ©®, Eaves and Veinott
[1] have characterized when a stationary optimal stopping policy exists.
By contrast, the next result characterizes when that pclicy can also
be taken to be halting. It asserts that such a policy exists if and

only if the method of successive approximations terminates in finitely

many steps when initiated with the value of any halting decision.

Theorem 4.2. (Existence of Stationary Optimal Halting Policies)
If there is a halting policy, then the following are equivalent.
(a) There is a stationary optimal halting policy.
(b) jﬁiivy is the optimal halting value for every i > h (resp.,
some i > 0) and every (resp., some) halting decision 7.
(e) ‘fiiv7 is a fixed point of 7% fortievery 1 2> h (resp.,
some i > 0) and every (resp., some) halting decision 7.

If also rg >> -~ for all &, then the above conditions remain

r o)
L equivalent on replacing "optimal halting'

1

with "optimal stopping" and

' inserting "halting" before "stationary" everywhere.
Proof's
. e
(a) => (b). By hypothesis, there is a stationary optimal
halting policy Sm, say. For each halting decision 7 and i >h
, i 3 = < i
it follows from Lemma 4.1 that Vg > A Vo > R5V7 - Vg B0 V, = A Y,

- ~

-




aa : .
(b) => (e¢). By Lemma 4.1 and hypothesis ‘ﬁ,1+“"17 > ’ﬂ,lV,y Z'ﬁ}ﬂv7

S0 "R(‘ﬂ,lv,y) ='R,lv7.

(¢) => (a). By Lemma 4.1 vk = ‘ﬂ,kvy is nondecreasing in k > 0,
T and by hypothesis vk =v" for k > 1. Choose the decisions 80 —S
L k k-1 s s .
; 61, 62, ... recursively so that v = Rskv and 61{ = 6k-l e
Ve (R, 1) for sef amd k> 0. We now show that 5, is
s Sk-l s i il
halting. If not, the graph of 8i contains a circuit T on the

set of states C say. Let m >0 be the smallest integer such that

s s s : ) :
6m = 6m+l = lelsiel (= Si for each s € C. Since 50 = 7 1is halting,
m> 0. Because V- > e (with vt = V7)
K+1 k k=1 kK
w B2 (g v, 2 (g v, =

for each s E,J and k > O.
Now we show by induction on k that for each m-1 < k < i, at

least one of the inequalities in (1) is strict for some s € C

(depending on k). Since 8:1_1 £ 8:1 for some s e C, the first in-
equality in (1) is strict for that s by construction so the claim
holds for k = m-1l. Suppose it holds for k-1(n-1 < k-1 <1i) and
consider k. Then v: > v:-l for some t € C. Now by definition of
C, there is an s € C such that (s,t) is an arc of the graph of
Sk. Thus the second inequality in (1) is strict if VE > «o for each
u in the set du of states immediately accessible from s when using
Sk. Since vk _>_ vm, it suffices to show VE > o for each u 69[.

We now show that this is the case.

i~ Recall that vr: > 0 for some t € C. Put B = Sm. Since
6; = 8° and the graph Gy contains a chain (in T) from t to s

12
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having N, say, nodes, then (Pg)tu > 0 for each u € ?[. Also because
RV" > v" by (1), RO + Pv® = Rv" > v Hence v'> = for each
o) - o) o} o) - u
b u e U as claimed, so the second inequality in (1) is strict.
” :
p From the above, vi * > vl, which is a contradiction. Thus, Si
is halting. Also by (1) and . ¥, v = Ry v' and so v' = Vg o

it

Hence as in Eaves and Veinott [1], vi > vai for all 3, so
on iterating this inequality using the decisions in a policy T we get
vi > vﬂ + ngi for N> 1. Thus if 7 is halting, vt > L Hence
8: is a stationary optimal halting policy, establishing (a).

To complete the proof, it remains to note that if re >> «» for all
8, "optimal halting" is replaced by "optimal stopping" and "halting" is
inserted before "stationary" everywhere in the above theorem and its
proof, and "T is halting" is replaced by "m is stopping"” in the preceding
paragraph, then the proof is valid as is. (The finiteness of the re's

is used only in the next to last sentence of the proof that (c) implies (a).)

Remark. One immediate consequence of the above result is that if 8 is
a halting stationary optimal halting (resp., stopping) policy, then

h
£ 5V7 is the optimal halting (resp., stopping) value for each halting

decision 7.

Algorithm. The above proof justifies the following procedure for deter-
mining whether or not a halting stationary optimal halting (resp.,
stopping) policy exists, and if so, producing such a policy. First,

use the construction of Theorem 3.1 to determine whether or not a
halting decision exists, and if so, find one, say 7. In the latter
event construct 50, 51, 82, ees inductively as in the proof of Theorem
b2 untilan O<1i<§ 1is found for which v, isa fixed point

13
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of 1QI. In that event 5: is the desired halting stationary optimal
halting (resp., stopping) policy. If no halting decision 7 exists,

o ; . i < = :
or if 7 is halting but 1&, v7 is not a fixed point for any
0<1i<s, then no halting stationary optimal (resp., stopping) policy
exists.

Theorem 4.2 implies that if the ra's are all finite, then the

optimal halting and stopping values coincide. However, this need not

be the case when Tag = —« for some ® and s as the following example

illustrates.

Example. The Optimal Halting and Stopping Values Need Not Coincide.

Suppose there is one state and two actions ¥ and & are available
therein. If 7 is chosen at time k, the population receives a reward
of - and stops. If ©® 4is chosen at time k, the population receives
zero rewerd, remains in the state with probability 1/2, and stops with
probability 1/2. Both v, == and v,
where "R v = max(1/2 v, -®»). Also v is the optimal stopping value
and v7 is the optimal halting value.

= 0 are fixed points of ‘ﬂ,

1/2

1/2

Eigure 1.

Recall 2z 1is the average number of actions in a given state. Note
that Szz is the number of additions and approximately the number of

14




comparisons required in one application of the optimal return opers v
Thus the number of operations needed in S steps of successive approxi-
mations is O(SBZ).

Incidentally not all decisions 60, 51, 62, «++ chosen above are
necessarily halting even though the first and the last decisions are
halting.

Example. Halting and Nonhalting Decisions are Obtained During Inter-

mediate Steps.

Referring to Figure 2 Tbelow, consider a system with three states
labeled 1, 2, 3. There are two actions available in states 1 and 3
while state 2 has three actions. Let a, b, ¢ denote respectively
the first, second, and third actions available in a state. Let the
rewards be r(l,a) = 0, r(l,b) = r(2,a) = r(2,b) = r(2,¢) = r(3,a) =
r(3,b) = 1. Let the transition rates be p(1l]|2,c) = 1, p(2[3,b) =
p(3]|2,b) = 1/2 and all others zero. Note that 8, = (aja,a) 1is halt-

ing, but 8, = (b,b,b) is not.

The Gauss=-Seidel Method of Successive Approximations.

In general the method of successive approximations can be improved
by updating the value v:+l immediately after it is computed. Define

(Tssv)k = (Rﬁv)S if k=s, and (Tssv)k =V, otherwise. Let

y - TS5 LG Tls‘ Observe that T5v =Ty + st where Q8 = PSa s P16

and P85 is formed by replacing the sth row of the identity matrix by

ch

the sth row of PS' Define the Gauss=Seidel optimal return operator

’:* by ’Jv = mx&eAT5V°

Our goal now is to establish analogs of Lemma 4.1 and Theorem 4.2
for the Gauss=Seidel optimal return operator. An elegant way to show

this is to note that both of the above results and their proofs are

15
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Figure 2.

valid as is when 1Q, and R, are replaced respectively by !3‘ and T

o) 8°
However, there is one complication in this approach. It is that 11Fv7
is not the value of a halting policy in the sense defined here. However,

ﬁ;?vy is the value of a generalized halting policy in which the action

chosen at each time depends not only on the state occupied at that time

but also on the last state visited. More precisely, let 81, g 8k

be decisions with '}kv =T e« T_ v_. Then ',‘kv is the value
7 81 Sk 4 Y

of the generalized halting policy in which one uses 51, ees 3§ Sk

consecutively, each for as long as the states visited decrease strictly.

Thus if &, is used at time n and the system is in states s and

i

t at times n and n+l respectively, then one uses 5i in period

n+tl if s>t and & in that period otherwise.

i+l
We can avoid the use of these generalized halting policies by e
proving a variant of the natural analoys of Lemma 4.1. First, an upturn

16




in a sequence of N positive integers sl, Sy eee SN is an integer

<n< < s = O s
l_n__N such that sn-l—sn where 0 0 Let g’rrs be the limit

as N - o of the maximum number of upturns in the first N states

visited starting with 8, =8 and using T among those sequences of

length N having positive probability. Let By = maxnes Ers be called

the upturn number of the policy w. Also let 85 = € and By, =~ K,
tS) 8 s
Given a stationary policy a°°, we can compute Es by considering

the graph GG' Clearly G, 1is circuitless if and only if Es < o,

<)
since the existence of a circuit implies there is at least one arc

(1,3) In © called an upturn arc, such that i < j. If Gy 1is

8’
circuitless, then By is one plus the number of upturn arcs in the

chain that has the maximum number of upturn arcs. This chain is easily
computed by any algorithm for finding a maximum cost chain when a value

of one is assigned to each upturn arc and all others are assigned value

zero. An analog of Lemma 4.1 is now presented.

Lemma k4.3.

If 7 is a halting decision, then ﬁ-kvy is nondecreasing in
k > 0. Also ﬂkv < #{v < 'ﬂl{sv for all k > O' and all v such that
v <"Rv. Moreover, for each v, qu > T;fv for all k > 0 and

k
= > .
Tyv Vy for all k > 37

Proof.
k+1
Since 7 1is halting, ’.#vy > T7v7 . Voo Thus @ \ > ’i(v,r
for all k > O.
Let w be such that w E‘ﬂw and let & be a decision such that

'ﬂw=Rw. Thus T

8 w >w for all t. Iterating this inequality,

td

17
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w = Ts_l,5 Tlaw >w for s = e I S wl_=_w. For
s=1,2, ... , S we have ('R_w)s = (st)s < (Rﬁws)s o (Tsw)s < (#w)s,
wherc the first inequality follows from the monotonicity of R5 and
the second equality follows from the definition of T&' Thus ‘ﬂw Sqw
for all w such that w < ‘Rw. Hence since v S"Rv, we have by in=-

duction that

(1) RS ¥R <A

where the first inequality follows from what was shown above on letting
W o= ‘ﬁ_k-lv and the second inequality follows from the monotonicity of
'* together with the induction hypothesis.

From the definition of T s’
(2) w <RV implies T ¥ <Rw forall s and a.

Let y be such that y S‘Ry and let B be a decision satisfying
'xy = TBy. Then (2) implies Tlﬁy E‘ﬂy. Applying TsB sequentially

for 8 =2, J; vss 3 S ylelds

S
(3) 4y - Tg¥ S Tgg **° Tsﬂ,gR,sy <R’y

where the first inequality follows by iteratively applying (2) for

j=1,2, oo 5 s on setting w =“R_Jy. Moreover by induction

) ,#_kv < #ns(k-l)v 5_‘RSRV

where the first inequality is true from the induction hypothesis together
with the monotonicity of #and the second inequality follows from (3)

on letting y ='ﬂ's(k'l)v. We conclude from (1) and (4) that v E‘R_v
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implies "Rkv < 'x-ﬁv S"A,SKV for all k > O.
From the definition of ’.¥, '¥w > T7w for all w. By induction,
ﬁ'kv z_th:-lv > T;v where the first inequality follows from the mono-

tonicity of :f together with the induction hypothesis and the second

inequality follows from what was shown above on setting w = Ti-]v.

Thus v > T;‘v for all k.

It remains to show T:v = v7 for k > gy. Call a state that is

immediately accessible from a state s when 7> is used a follower

{s: w. =v. } where w is an

of s. Let J, z {s: g <kl and I = s = Vyq

k—
S-vector. If the followers of s are in Lw’ then

(5) (Tsyw)S =T, * (wa) =r. +(Pv.) =v

Y s rs Y ¥'s s °

It is sufficient to show

(6) J. L forr K = O Ly e

since Jk

ﬁs;lw_ which is trivially true. By induction, assume (6) holds for

k=l and consider k. Let w' = ij o T17T§-lv for 1LSJ S8 and
(5} k=1

w

=z T7 v. For simplicity of notation, let LJ gL 5 It is sufficient
w

to show that

= {1, 2, . 5 8) for k> g, For k = 0, (6) becomes

(7) J’kn[l, 2, e J];LJ fOI‘ j = 0, ces S

since w = T?v and, when j = 8, (7) becomes (6). Now (7) is trivial
for j = 0. Suppose it holds for Jj-1 and consider Jj. Since ij
changes only the j=th component of any vector,
(8) L. SL VU0 .
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Thus if J is not in J then by the induction hypothesis

k’

Jkr\[l, s J}c_:Jknfl, e B J-l}ng. I J s dn J then

k)
the set Bj of followers of j that are in HJ = (j+1, j+2, «c. , S}
must have upturn numbcer at most k-1 and the set E]. of followers of
j that are in (1, 2, ... , j=1} must have upturn number at most k.
From (6) for k-1, B CI N qu:_LonHjc_;; Ly where the third

inclusion follows from the fact that the operators Tp7 for 1 E P S 9

do not change the components of any vector with indices in Hj' From

(7) for J-l1, Engj-l' Thus the followers of j are in Lj-l’ and
o doly . :
from (5) vy (Tj7w )j = Vo g0 Hence j € I.J and thus by (7) for

j=1 and (8), (7) holds for j which completes the proof.

Remark. Lemma 4.3 implies that the Gauss-Seidel method converges faster
than the usual method of successive approximations, i.e., the value of
each Gauss-Seidel iterate is always greater than that of the usual
method.

Now using the above lemma we obtain the analog of Theorem 4.2.

Theorem 4.4,

Theorem 4.2 remains valid if W is replaced by %f and h by g.

Proof.

The proof is identical to that of Theorem 4.2 where A, R’, P,,,
and h are replaced by '#-, Ty, Q_,, and g respectively and Lemma 4.3
is used instead of Lemma 4.1 with only one exception. The exception
is that the above replacements are not made in the last paragraph of

the proof that (c) implies (a). Q.E.D.
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Remark 1. The remark and algorithm following Theorem 4.2 also remain

valid with the obvious replacements.

Remark 2. The preceding theorem implies that if the states are labeled
such that P6 is lower triangular with zero diagonal elements for

some optimal halting (resp., stopping) policy 5”, then ?fv& = Vg
for every halting decision 7 since 8 = 1. The number of oper-

ations is thus reduced by a factor of g.

In some cases it is possible to determine whether there exists a
halting optimal stopping policy without computation. The following
theorem gives sufficient conditions for the existence of a halting

stationary optimal stopping policy.

Theorem 4.5.
Assume there exists a halting policy and -~ << T <0 for
each decision ©&. If for each decision & and each circuit C in

G the product of the transition rates around C 1is one or more and

8,

Tst < 0 for some t e C, then there exists a halting stationary

optimal stopping policy.

By hypothesis, there exists a halting policy and hence a stopping
policy. Also 0> §70, so by a result of Eaves and Veinott [1],
there exists a stationary optimal stopping policy 5m, Ve < 0, and
-1lv8 = VS. Suppose G8 has a circuit consisting of the nodes

(1, 2, ... , m} with rg, <0, say. Then Vg, < P) *** P Ve < Vg

81
where p, = p(k+l|k,5k) for k<m and p = p(1|m,gm). This is a
contradiction, so & is halting and the theorem follows.
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